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In this paper, several simple and efficient sign based normalized adaptive filters, which

are computationally superior having multiplier free weight update loops are used for

cancelation of noise in electrocardiographic (ECG) signals. The proposed implementa-

tion is suitable for applications such as biotelemetry, where large signal to noise ratios

with less computational complexity are required. These schemes mostly employ simple

addition, shift operations and achieve considerable speed up over the other least mean

square (LMS) based realizations. Simulation studies shows that the proposed realization

gives better performance compared to existing realizations in terms of signal to noise

ratio and computational complexity.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The electrocardiogram (ECG) is a graphical representa-
tion of hearts functionality and is an important tool used
for diagnosis of cardiac abnormalities. In clinical environ-
ment during acquisition, the ECG signal encounters with
various types of artifacts. The predominant artifacts
present in the ECG includes: baseline wander (BW),
power-line interference (PLI), muscle artifacts (MA) and
motion artifacts (EM). These artifacts strongly affects the
ST segment, degrades the signal quality, frequency
resolution, produces large amplitude signals in ECG that
can resemble PQRST waveforms and masks tiny features
that are important for clinical monitoring and diagnosis.
Cancelation of these artifacts in ECG signals is an
important task for better diagnosis. The extraction of
high-resolution ECG signals from recordings which are
ll rights reserved.

ik).
contaminated with background noise is an important
issue to investigate. The goal of ECG signal enhancement
is to separate the valid signal components from the
undesired artifacts, so as to present an ECG that facilitates
easy and accurate interpretation. Many approaches have
been reported in the literature to address ECG enhance-
ment using both adaptive and non-adaptive techniques
[1–13], adaptive filtering techniques permit to the detect
time varying potentials and to track the dynamic varia-
tions of the signals. In [2], Thakor et al. proposed an LMS
based adaptive recurrent filter to acquire the impulse
response of normal QRS complexes and then applied it for
arrhythmia detection in ambulatory ECG recordings. The
reference inputs to the LMS algorithm are deterministic
functions and are defined by a periodically extended,
truncated set of orthonormal basis functions. In such a
case, the LMS algorithm operates on an instantaneous
basis such that the weight vector is updated for every
new sample within the occurrence based on an instanta-
neous gradient estimate. In a study, however, a steady
state convergence analysis for the LMS algorithm with
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Fig. 1. Adaptive filter structure.
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deterministic reference inputs showed that the steady-
state weight vector is biased and thus the adaptive
estimate does not approach the Wiener solution [14]. To
handle this drawback another strategy was considered for
estimating the coefficients of the linear expansion,
namely, the block LMS (BLMS) algorithm [15], in which
the coefficient vector is updated only once for every
occurrence based on a block gradient estimation. The
BLMS algorithm has been proposed in the case of random
reference inputs and when the input is stationary, the
steady state misadjustment and convergence speed is
same as the LMS algorithm. A major advantage of the
block, or the transform domain LMS algorithm is that the
input signals are approximately uncorrelated. In [16],
Kotas presented an application of principal component
analysis and its robust form for ECG enhancement, Floris
et al. elaborates fast lane approach using improved
versions of LMS and normalized LMS(NLMS) algorithms
for the prediction of respiratory motion signals [17],
subtraction procedure without affecting the components
of ECG signal [18], Sayadi et al. [19] proposed bionic
wavelet transform for the correction of baseline drift and
Sameni et al. [20] established a framework of Bayesian
filtering for ECG denoising. Apart from these ECG
enhancement techniques several adaptive signal proces-
sing techniques are also published, e.g., NLMS algorithm
with decreasing step size, which converge to the global
minimum [21], a variable step size NLMS algorithm with
faster convergence rate [22], Costa et al. in [23] proposed
a noise resilient variable step size LMS which is specially
indicated for biomedical applications. Also several mod-
ifications are presented in literature to improve the
performance of the LMS algorithm [24–28].

In recent years biotelemetry has become more im-
portant, recently in [29] Sufi et al. proposed ECG
compression algorithms for wireless telecardiology. Com-
plexity reduction of the noise cancelation system, parti-
cularly, in applications such as wireless biotelemetry
system has been remained a topic of intense research.
This is because of the fact that with increase in the ECG
data transmission rate, the channel impulse response
length increases and thus the order of the filter increases.
The resulting increase in complexity makes the real time
operation of the biotelemetry system difficult, specially in
view of simultaneous shortening of the symbol period,
which means that lesser and lesser time will be available
to carry out the computations while the volume of the
computations goes on increasing. Thus far, to the best of
the author’s knowledge, no effort has been made to
reduce the computational complexity of the adaptive
algorithm without effecting the signal quality. The
computational complexity can be reduced by using the
sign based algorithms, namely, the signed regressor
algorithm, the sign algorithm and the sign–sign algorithm
[32], all the three requires only half as many multi-
plications as in the LMS algorithm, thus making them
attractive from practical implementation point of view. In
order to cope up with both the complexity and conver-
gence issues without any restrictive tradeoff we propose
various adaptive filter structures based on normalized
signed regressor LMS (NSRLMS) algorithm, normalized
sign LMS (NSLMS) algorithm and normalized sign–sign
LMS (NSSLMS) algorithm. These algorithms enjoy less
computational complexity because of the sign present in
the algorithm and good filtering capability because of the
normalized term [30,31]. To study the performance of the
filter structures which effectively remove the artifacts
from the ECG signal we carried out simulations on
MIT-BIH database for different noises. The simulation
results shows that the performance of sign based algo-
rithms is better than the LMS counterpart.

2. Computationally efficient adaptive filtering
techniques

Consider a length L, LMS based adaptive filter, depicted
in Fig. 1, that takes an input sequence x(n) and updates
the weights as

wðnþ1Þ ¼wðnÞþmxðnÞeðnÞ, ð1Þ

where, wðnÞ ¼ ½w0ðnÞw1ðnÞ � � �wL�1ðnÞ�
t is the tap weight

vector at the nth index, xðnÞ ¼ ½xðnÞxðn�1Þ � � � xðn�Lþ1Þ�t ,
error signal e(n)=d(n)�wt(n)x(n), with d(n) being so-
called the desired response available during initial
training period and m denoting so-called step size
parameter.

In order to remove the noise from the ECG signal, the
ECG signal s1(n) corrupted with noise signal p1(n) is
applied as the desired response d(n) to the adaptive filter
shown in Fig. 1. If the noise signal p2(n), possibly recorded
from another generator of noise that is correlated in some
way with p1(n) is applied at the input of the filter, i.e.,
x(n)=p2(n) the filter error becomes e(n)=[s1(n)+
p1(n)]�y(n). Where, y(n) is the filter output and it is
given by,

yðnÞ ¼wtðnÞxðnÞ, ð2Þ

Since the signal and noise are uncorrelated, the mean-
squared error (MSE) becomes

E½e2ðnÞ� ¼ Ef½s1ðnÞ�yðnÞ�2gþE½p2
1ðnÞ� ð3Þ

Minimizing the MSE results in a filter output which is the
best least-squares estimate of the signal s1(n).

New algorithms that make use of the signum (polarity)
of either the error or the input signal, or both [32], have
been derived from the LMS algorithm for the simplicity of
implementation, enabling a significant reduction in



Table 1
A computational complexity comparison table.

Algorithm MACs ASC Divisions Shifts

LMS L+1 Nil Nil Nil

SRLMS 1 Nil Nil Nil

SLMS L Nil Nil Nil

SSLMS Nil L Nil Nil

NLMS 2L+1 Nil 1 Nil

NSRLMS 1 Nil 1 Nil

NSLMS L Nil 1 Nil

NSSSLMS Nil L 1 L

BB-NSRLMS Nil L 1 1

BB-NSLMS L Nil 1 Nil

BB-NSSLMS Nil L 1 Nil
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computing time, particularly the time required for ‘‘multi-
ply and accumulate’’ (MAC) operations. These algorithms
are attractive for their assured convergence and robust-
ness against the disturbances in addition to the ease of
implementation. The most important members of this
class of algorithms are : signed regressor algorithm (SRA),
sign algorithm (SA) and sign–sign algorithm (SSA). The
weight update relations for these algorithms, respectively,
are

wðnþ1Þ ¼wðnÞþm sgnfxðnÞgfeðnÞg, ð4Þ

wðnþ1Þ ¼wðnÞþmfxðnÞg sgnfeðnÞg, ð5Þ

and

wðnþ1Þ ¼wðnÞþm sgnfxðnÞg sgnfeðnÞg: ð6Þ

where sgn{.} is the well known signum function.
Normalized LMS (NLMS) algorithm is another class of

adaptive algorithm used to train the coefficients of the
adaptive filter. This algorithm accounts the variation in
the signal level at the filter output and selecting the
normalized step size parameter that results in a stable as
well as fast converging algorithm. The weight update
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relation for NLMS algorithm is as follows:

wðnþ1Þ ¼wðnÞþ
m

pþxtðnÞxðnÞ

� �
xðnÞeðnÞ, ð7Þ

The variable step can be written as

mðnÞ ¼ m
pþxtðnÞxðnÞ

ð8Þ
0 500 1000 1500

Convergence curve of the NSLMS

0 500 1000 1500

Convergence curve of the BB−NSRLMS

0 500 1000 1500

Convergence curve of the BB−NSSLMS

ics of various algorithms.



M.Z.U. Rahman et al. / Signal Processing 91 (2011) 225–239228
Here m is fixed convergence factor to control maladjust-
ment. The parameter p is set to avoid denominator being
too small and step size parameter too big.

Among the adaptive algorithms presented above, the
SRA, SA and SSA has a convergence rate and a steady-state
error that are slightly inferior to those of the LMS
algorithm for the same parameter setting. But, the
computational complexity of these algorithms is much
less compared to the LMS algorithm. The advantage of the
NLMS algorithm is that the step size can be chosen
independent of the input signal power and the number of
tap weights. Hence the NLMS algorithm has a conver-
gence rate and a steady state error better than LMS
algorithm. On the other hand some additional computa-
tions are required to compute mðnÞ. In order to cope up
with both the complexity and convergence issues without
any restrictive tradeoff, we propose normalized sign
based algorithms such as normalized signed regressor
LMS (NSRLMS) algorithm, normalized sign LMS (NSLMS)
algorithm and normalized sign–sign LMS (NSSLMS) algo-
rithm for the removal of noise from ECG signal.
The weight update relations for these algorithms, respec-
tively, are

wðnþ1Þ ¼wðnÞþmðnÞ sgnfxðnÞgfeðnÞg, ð9Þ

wðnþ1Þ ¼wðnÞþmðnÞfxðnÞgsgnfeðnÞg, ð10Þ

and

wðnþ1Þ ¼wðnÞþmðnÞ sgnfxðnÞgsgnfeðnÞg: ð11Þ
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Fig. 3. MIT-BIH recorded ECG signal (dat
The additional computations required to compute mðnÞ in
Eqs. (9)–(11) can be further reduced by using a block
based NLMS (BB-NLMS) algorithm in which the input data
is partitioned into blocks and the maximum magnitude
within each block is used to compute mðnÞ. With this, the
weight update relations in (9)–(11) for xLi

a0 and p=0
takes the following form

wðnþ1Þ ¼wðnÞþ
m
x2

Li

sgnfxðnÞgfeðnÞg, ð12Þ

wðnþ1Þ ¼wðnÞþ
m
x2

Li

fxðnÞgsgnfeðnÞg, ð13Þ

and

wðnþ1Þ ¼wðnÞþ
m
x2

Li

sgnfxðnÞgsgnfeðnÞg, ð14Þ

where xLi
¼maxfjxkj,k 2 Z0i g, Z 0i ¼ fiL,iLþ1, . . . ,iLþL�1g,

i 2 Z. And for xLi
¼ 0 and p=0 the Eqs. (9)–(11) becomes

w(n+1)=w(n).
These algorithms are known as block based NSRLMS

(BB-NSRLMS), block based NSLMS (BB-NSLMS)and block
based NSSLMS (BB-NSSLMS), respectively.

The convergence characteristics of various algorithms
discussed above are shown in Fig. 2. From these
characteristics it is clear that the NSRLMS algorithm
exhibits better convergence characteristics in terms of
both convergence rate and excess mean square error.
00 2500 3000 3500 4000
ples

0 60 70 80 90 100
ncy in Hz

a 105) and its frequency spectrum.
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3. Computational complexity issues

As the sign based algorithms are largely free from the
MAC operations, the proposed schemes provide elegant
means to remove the noise from the ECG signal. Table 1
provides comparative account of different commonly used
algorithms and the proposed algorithm in terms of number
of operations required. Among all the algorithms the NLMS
is more complex, it requires 2L+1 MACs and 1 division. The
conventional LMS algorithm requires L+1 MAC operations
to implement the weight updating Eq. (1) on DSP processor.
For SSLMS algorithm, to evaluate w(n+1) from w(n) using
Eq. (4), only L add with sign check (ASC) operations are
required. But, from Fig. 2 it is clear that the rate of
convergence of this algorithm is very slow. Hence, the
SSLMS algorithm alone will not be a suitable candidate
for the removal of noise from the ECG signal. The NSSLMS
algorithm, which is the combination of SSLMS and
NLMS is very much suitable as this algorithm requires L

shift L ASC operations in case of block based realization or if
we choose the value of mðnÞ as a power of 2. From the
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Fig. 6. Typical filtering results of baseline wander reduction: (a) difference si

difference signal after NSLMS filtering, (d) difference signal after NSSLMS filte

after BB-NSLMS filtering, (g) difference signal after BB-NSSLMS filtering.
Table 1 it is also clear that the number of computations
required for the proposed block based NSRLMS is
independent of filter length L. Note that ASC and shift
operations requires less logic circuitry when compared with
MAC operations.

4. Simulation results

To show that the normalized signed algorithms are
really effective in clinical situations, the method has been
validated using several ECG recordings with a wide
variety of wave morphologies taken from MIT-BIH
arrhythmia database. We used the benchmark MIT-BIH
arrhythmia database ECG records as the reference to our
work. The arrhythmia data base consists of 48 half hour
excerpts of two channel ambulatory ECG recordings,
which were obtained from 47 subjects, including
25 men aged 32–89 years, and women aged 23–89 years.
The recordings were digitized at 360 samples per
second per channel with 11-bit resolution over a 10 mV
range. The concept of filtering is tested with real noise
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gnal after LMS filtering, (b) difference signal after NSRLMS filtering, (c)

ring, (e) difference signal after BB-NSRLMS filtering, (f) difference signal
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obtained from MIT-BIH Normal Sinus Rhythm Database
(NSTDB). In our simulation we used first 4000 samples
of the ECG signals. For evaluating the performance
of the proposed filter structures we have measured the
signal-to-noise ratio (SNR) improvement and compared
with LMS algorithm. For all the figures number of

samples are taken on x-axis and amplitude on y-axis,
unless stated. Tables 2–5 gives the contrast of all
algorithms in terms of SNR improvement (dBs). In our
experiments we have considered a dataset of five ECG
records: data100, data105, data108, data203 and
data228 to ensure the consistency of results. Fig. 3
shows clean ECG (data 105 of MIT-BIH database) and
its frequency spectrum, simulation results for this
record are shown in this paper. Various adaptive filter
structures are implemented using LMS, NSRLMS, NSLMS,
NSSLMS, BB-NSRLMS, BB-NSLMS and BB-NSSLMS
algorithms.
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Fig. 7. Typical filtering results of PLI Cancelation: (a) ECG with PLI, (b) reco

algorithm, (d) recovered signal using NSLMS algorithm, (e) recovered signal us

Table 2
Performance contrast of various algorithms for the removal of BW.

Rec. no. LMS NSRLMS NSLMS NS

100 2.1986 8.8575 8.2527 6.4

105 3.4080 11.1317 8.8560 7.9

108 2.2791 9.4754 8.7383 6.9

203 2.6438 8.2857 6.7347 5.9

228 3.2148 10.4830 8.9809 7.6

Average 2.7488 9.6426 8.3125 6.9
4.1. Noise generator

The reference signal n2 shown in Fig. 1 is taken from
noise generator. A synthetic PLI with 1 mv amplitude is
simulated for PLI cancellation, no harmonics are synthesized.
In order to test the filtering capability in non-stationary
environment we have considered real BW, MA and EM
noises. These are taken from MIT-BIH Normal Sinus Rhythm
Database (NSTDB). This database was recorded at a sampling
rate of 128 Hz from 18 subjects with no significant
arrhythmias. A random noise with variance of 0.001 is
added to the ECG signals to evaluate the performance of the
algorithm. The input SNR for the above non-stationary noise
is taken as 1.25 dB. In these three simplified algorithms
because of the sign present in the recursion some tiny noise
remains along the ST segment of the ECG signal. In order to
extract the residual noise a tiny PLI is added to the noise
reference signal. This improves the performance of the filter.
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vered signal using LMS algorithm, (c) recovered signal using NSRLMS

ing NSSLMS algorithm.

SLMS BB-NSRLMS BB-NSLMS BB-NSSLMS

445 7.4645 6.9348 4.912

423 9.3007 6.9696 6.2112

345 6.7958 6.6014 5.2817

609 7.0365 5.5887 4.8235

581 8.4255 7.1900 6.2572

880 7.8046 6.6569 5.4971
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4.2. Baseline wander reduction

In this experiment we collected first 4000 samples of
the ECG signal corrupted with real baseline wander (BW).
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Fig. 9. (a) Frequency spectrum of ECG with PLI, (b) frequen
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The contaminated ECG signal is applied as primary input to
the adaptive filter of Fig. 1. The noise generator a real BW
with additive random noise and tiny sinusoidal inter-
ference is given as reference signal. Simulation results are
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cy spectrum after filtering with NSRLMS algorithm.
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plotted in Fig. 4 and that for block based filters are shown
in Fig. 5. From Fig. 4(c) it is clear that the output from
NSRLMS based filter has high resolution. Fig. 6 shows the
difference signals between original and restored signals
due to various algorithms. From Figs. 4(b) and 6(a) it is
clear that after LMS filtering some residual BW remains in
the filter output, i.e, LMS based adaptive filter has low
tracking capability of non-stationary variations. Figs. 4(c)
and 6(b) shows the restored, difference signals for NSRLMS
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Fig. 10. Typical filtering results of PLI cancelation: (a) difference signal after LMS

after NSLMS filtering, (d) difference signal after NSSLMS filtering, (e) differenc

filtering, (g) difference signal after BB-NSSLMS filtering.

Table 3
Performance contrast of various algorithms for the removal of PLI.

Rec. No. LMS NSRLMS NSLMS N

100 21.8102 25.7098 22.0193 21

105 21.5941 26.1090 24.3117 22

108 21.9815 25.9514 24.8089 21

203 20.2211 24.7975 20.8499 19

228 22.4014 26.6688 24.3587 22

Average 21.6016 25.8473 23.2697 20
algorithms, here the amplitude of the difference almost
approaches the DC line. Where as for NSLMS and NSSLMS
filters, because of the sign term less amplitude residual
noise present along with the baseline, but lower than that
of LMS counterpart. The relative performance of the filters
is measured with SNR. These are presented in Table 2 for
the entire dataset. The average SNR improvement for
NSRLMS is 9.6426 dB, NSLMS gets 8.3125 dB, NSSLMS
gets 6.9880 dB, BB-NSRLMS gets 7.8046 dB, BB-NSLMS
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e signal after BB-NSRLMS filtering, (f) difference signal after BB-NSLMS

SSLMS BB-NSRLMS BB-NSLMS BB-NSSLMS

.5828 22.6596 18.4834 14.7717

.2586 22.7868 20.7158 18.3982

.8887 22.7595 21.0130 17.8503

.0398 21.5021 18.9741 17.5042

.3239 23.3588 21.5293 20.4374

.8187 22.6133 20.1431 17.7923
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Fig. 11. Typical filtering results of muscle artifacts removal: (a) ECG with real MA noise, (b) recovered signal using LMS algorithm, (c) recovered signal
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algorithm, (c) recovered signal using BB-NSSLMS algorithm.
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gets 6.6569 dB and BB-NSSLMS gets 5.4971 dB, where
as conventional LMS gets 2.7488 dB. Therefore sign based
normalized, block based normalized sign adaptive filters
has good tracking and less computational complexity.
4.3. Adaptive power-line interference canceler

This experiment demonstrates power line interference
(PLI) cancelation, i.e, stationary noise cancelation. The
0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

0 500 1000 1500 2000

−0.2
0

0.2

Fig. 13. Typical filtering results of muscle artifacts removal: (a) difference sig

difference signal after NSLMS filtering, (d) difference signal after NSSLMS filte

after BB-NSLMS filtering, (g) difference signal after BB-NSSLMS filtering.

Table 4
Performance contrast of various algorithms for the removal of MA.

Rec. no. LMS NSRLMS NSLMS NS

100 3.5006 8.6948 6.6882 5.1

105 4.9304 10.7969 7.8169 6.8

108 3.9917 9.7647 7.6231 5.5

203 5.9127 11.4005 9.6401 8.1

228 4.7286 9.0338 8.069 6.8

Average 4.6128 9.9381 7.9674 6.5
input to the filter is ECG signal corrupted with a synthetic
PLI of amplitude 1 mv, frequency 60 Hz and sampled at
200 Hz, which is generated in the noise generator. The
reference signal is synthesized PLI, the output of the filter
is recovered signal. The filtered signals using normalized
signed filters are shown in Fig. 7 and the corresponding
results for block based algorithms are shown in Fig. 8. The
frequency spectrum before filtering and after filtering
using NSRLMS algorithm are shown in Fig. 9. The
difference signals are shown in Fig. 10. These low
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SLMS BB-NSRLMS BB-NSLMS BB-NSSLMS

890 6.7857 5.0863 4.5237

141 9.6467 6.6011 4.8847

868 7.7298 6.2130 5.5384

926 9.4912 8.1992 7.0282

312 8.6244 7.3276 6.5730

227 8.4555 6.6847 5.7096
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Fig. 14. Typical filtering results of motion artifacts removal: (a) ECG with real EM, (b) recovered signal using LMS algorithm, (c) recovered signal using

NSRLMS algorithm, (d) recovered signal using NSLMS algorithm, (e) recovered signal using NSSLMS algorithm.
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Fig. 15. Typical filtering results of motion artifacts removal: (a) recovered signal using BB-NSRLMS algorithm, (b) recovered signal using BB-NSLMS

algorithm, (c) recovered signal using BB-NSSLMS algorithm.
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amplitude difference signals show the noise removal
ability of the filters. The SNR contrast for the dataset is
shown in Table 3. In SNR measurements it is found that
NSRLMS algorithm gets SNR improvement of 25.8473 dB,
NSLMS gets 23.2697 dB, NSSLMS gets 20.0097 dB,
BB-NSRLMS gets 22.6133 dB, BB-NSLMS gets 20.1431 dB
and BB-NSSLMS gets 17.7923 dB, where as the conventional
LMS algorithm improves to 21.6016 dB.

4.4. Adaptive cancelation of muscle artifacts

To show the concept of artifacts removal in the
presence of non-stationary noise, real muscle artifact
(MA) was taken from the MIT-BIH Noise Stress Test
Database. The MA originally had a sampling frequency of
360 Hz and therefore they were anti-alias resampled
to 128 Hz in order to match the sampling rate of ECG
signal. The ECG signal corrupted with muscle artifacts
is given as input to the adaptive filter. Real MA is given as
a reference signal. Figs. 11 and 12 shows the noise
removal using various algorithms. The typical difference
signals are shown in Fig. 13, which proves the tracking
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Fig. 16. Typical filtering results of motion artifacts removal: (a) difference

(c) difference signal after NSLMS filtering, (d) difference signal after NSSLMS filt

after BB-NSLMS filtering, (g) difference signal after BB-NSSLMS filtering.
ability of normalized algorithms in the presence of non-
stationary noise. The SNR improvement contrast for
various algorithms are presented in Table 4. In SNR
measurements it is found that NSRLMS algorithm gets
SNR improvement of 9.9381 dB, NSLMS gets 7.4048 dB
and NSSLMS gets 6.5227 dB, BB-NSRLMS gets 8.4555
dB, BB-NSLMS gets 6.6847 dB and BB-NSSLMS gets
5.7096 dB, where as the conventional LMS algorithm
gets 4.6128 dB.

4.5. Adaptive motion artifacts cancelation

To show the concept of artifacts removal in the
presence of non-stationary noise, we have also considered
electrode motion artifact (EM). The ECG signal corrupted
with motion artifacts is given as input to the adaptive
filter. Real EM is taken as reference signal. Figs. 14 and 15
shows the noise removal using normalized and block
based algorithms. The typical difference signals shown in
Fig. 16 proves the tracking ability of normalized
algorithms in presence of non-stationary noise. The SNR
improvement contrast for various algorithms are shown
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Table 5
Performance contrast of various algorithms for the removal of EM.

Rec. no. LMS NSRLMS NSLMS NSSLMS BB-NSRLMS BB-NSLMS BB-NSSLMS

100 2.7289 10.8200 7.8668 7.6165 8.9416 6.3333 5.6090

105 3.9484 12.2121 8.9552 8.0493 10.2849 7.8379 6.8032

108 3.0080 10.7172 8.6646 6.8205 8.0243 6.0553 5.5755

203 3.3268 9.5363 7.9293 7.3478 7.6493 6.7010 5.9975

228 3.6710 9.7255 7.9868 7.5365 7.6063 6.7485 6.2828

Average 3.3366 10.6022 8.2805 7.4741 8.5012 6.7352 6.0536

M.Z.U. Rahman et al. / Signal Processing 91 (2011) 225–239238
in Table 5. In SNR measurements it is found that NSRLMS
algorithm gets SNR improvement of 10.6022 dB, NSLMS
gets 8.2805 dB, NSSLMS gets 7.4741 dB, BB-NSRLMS gets
8.5012 dB, BB-NSLMS gets 6.7352 dB and BB-NSSLMS gets
6.0536 dB, where as the conventional LMS algorithm
improves 3.3367 dB only.

5. Conclusion

In this paper the problem of noise cancelation from
ECG signal using sign based normalized adaptive filters,
their block based versions are proposed and tested on
real signals with different artifacts obtained from the
MIT-BIH database. For this, the input and the desired
response signals are properly chosen in such a way that
the filter output is the best least squared estimate of
the original ECG signal. Among the six algorithms, the
NSRLMS performs better than the other. From the
simulated results it is clear that these algorithms removes
non-stationary noise efficiently. The proposed treatment
provides high signal to noise ratio with less computa-
tional complexity. The computational complexity in terms
of MACs and SNR contrast are presented in Tables 1–5.
Hence the proposed NSRLMS, NSLMS, NSSLMS based
adaptive filters and their block based versions are more
suitable for wireless biotelemetry ECG systems.
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